• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

HSE Researchers Develop Python Library for Analysing Eye Movements

HSE Researchers Develop Python Library for Analysing Eye Movements

© iStock

A research team at HSE University has developed EyeFeatures, a Python library for analysing and modelling eye movement data. This tool is designed to simplify the work of scientists and developers by enabling them to efficiently process complex data and create predictive models.

The project was implemented as part of the Strategic Project 'Human-Centred AI' (Priority 2030).

Modern research increasingly leverages machine learning and artificial intelligence to analyse vast amounts of eye movement data. However, despite significant advancements in this field, certain challenges continue to limit the effectiveness of these methods. One such challenge is the limited flexibility of existing software solutions, which often offer a narrow range of parameter settings, making it difficult to customize them for specific research tasks. Additionally, the integration of these tools with other specialised software remains a significant limitation. 

The Python library EyeFeatures, developed by the Laboratory for Social and Cognitive Informatics at HSE Campus in St Petersburg, addresses these challenges by providing a versatile and user-friendly toolkit for working with eye movement data. It includes modules for processing and analysing data collected from eye trackers, devices that monitor eye movement during the performance of various tasks.

Processing eye movement data is a complex task that involves several stages. Since the eyes do not move smoothly but rather in a series of rapid, jerky motions, focusing on specific points, the first stage of data processing is identifying areas of fixation. In the second stage, metrics such as the average gaze fixation duration and the average distance between points are calculated, enabling the creation of initial, simple predictive or diagnostic models. 

All stages of data processing can be carried out using the various modules of the EyeFeatures library. The flexible, modular approach makes it easy to integrate eye movement data processing into existing research and commercial projects, from raw data to a fully developed predictive or explanatory model. For example, using the library in marketing research allows for the evaluation of consumer reactions to advertisements. Eye movement analysis will reveal which elements capture the most attention from the audience. 

According to Anton Surkov, Project Head, Junior Research Fellow at Laboratory for Social and Cognitive Informatics at HSE Campus in St Petersburg, 'The library can be valuable to researchers, as it enables them not simply to replicate existing functionality from other software but to implement new algorithms and create more advanced models for research in fields such as marketing, cognitive process diagnostics, user interface and neural interface development (where control and interaction with the program occur through eye movement), as well as combine components in innovative ways to achieve new results and enhance methodology.'

This solution streamlines data analysis and accelerates the creation of predictive models, which is particularly beneficial in medical diagnostics, marketing, and the study of cognitive processes. The library has already been applied in research conducted as part of the Strategic Project 'Human-Centred AI' and was presented at the ECEM 2024 international conference in Ireland.

See also:

HSE Psycholinguists Launch Digital Tool to Spot Dyslexia in Children

Specialists from HSE University's Centre for Language and Brain have introduced LexiMetr, a new digital tool for diagnosing dyslexia in primary school students. This is the first standardised application in Russia that enables fast and reliable assessment of children’s reading skills to identify dyslexia or the risk of developing it. The application is available on the RuStore platform and runs on Android tablets.

HSE Scientists Optimise Training of Generative Flow Networks

Researchers at the HSE Faculty of Computer Science have optimised the training method for generative flow neural networks to handle unstructured tasks, which could make the search for new drugs more efficient. The results of their work were presented at ICLR 2025, one of the world’s leading conferences on machine learning. The paper is available at Arxiv.org.

Physicists Propose New Mechanism to Enhance Superconductivity with 'Quantum Glue'

A team of researchers, including scientists from HSE MIEM, has demonstrated that defects in a material can enhance, rather than hinder, superconductivity. This occurs through interaction between defective and cleaner regions, which creates a 'quantum glue'—a uniform component that binds distinct superconducting regions into a single network. Calculations confirm that this mechanism could aid in developing superconductors that operate at higher temperatures. The study has been published in Communications Physics.

Neural Network Trained to Predict Crises in Russian Stock Market

Economists from HSE University have developed a neural network model that can predict the onset of a short-term stock market crisis with over 83% accuracy, one day in advance. The model performs well even on complex, imbalanced data and incorporates not only economic indicators but also investor sentiment. The paper by Tamara Teplova, Maksim Fayzulin, and Aleksei Kurkin from the Centre for Financial Research and Data Analytics at the HSE Faculty of Economic Sciences has been published in Socio-Economic Planning Sciences.

Larger Groups of Students Use AI More Effectively in Learning

Researchers at the Institute of Education and the Faculty of Economic Sciences at HSE University have studied what factors determine the success of student group projects when they are completed with the help of artificial intelligence (AI). Their findings suggest that, in addition to the knowledge level of the team members, the size of the group also plays a significant role—the larger it is, the more efficient the process becomes. The study was published in Innovations in Education and Teaching International.

New Models for Studying Diseases: From Petri Dishes to Organs-on-a-Chip

Biologists from HSE University, in collaboration with researchers from the Kulakov National Medical Research Centre for Obstetrics, Gynecology, and Perinatology, have used advanced microfluidic technologies to study preeclampsia—one of the most dangerous pregnancy complications, posing serious risks to the life and health of both mother and child. In a paper published in BioChip Journal, the researchers review modern cellular models—including advanced placenta-on-a-chip technologies—that offer deeper insights into the mechanisms of the disorder and support the development of effective treatments.

Using Two Cryptocurrencies Enhances Volatility Forecasting

Researchers from the HSE Faculty of Economic Sciences have found that Bitcoin price volatility can be effectively predicted using Ethereum, the second-most popular cryptocurrency. Incorporating Ethereum into a predictive model reduces the forecast error to 23%, outperforming neural networks and other complex algorithms. The article has been published in Applied Econometrics.

Administrative Staff Are Crucial to University Efficiency—But Only in Teaching-Oriented Institutions

An international team of researchers, including scholars from HSE University, has analysed how the number of non-academic staff affects a university’s performance. The study found that the outcome depends on the institution’s profile: in research universities, the share of administrative and support staff has no effect on efficiency, whereas in teaching-oriented universities, there is a positive correlation. The findings have been published in Applied Economics.

Advancing Personalised Therapy for More Effective Cancer Treatment

Researchers from the International Laboratory of Microphysiological Systems at HSE University's Faculty of Biology and Biotechnology are developing methods to reduce tumour cell resistance to drugs and to create more effective, personalised cancer treatments. In this interview with the HSE News Service, Diana Maltseva, Head of the Laboratory, talks about their work.

Physicists at HSE University Reveal How Vortices Behave in Two-Dimensional Turbulence

Researchers from the Landau Institute for Theoretical Physics of the Russian Academy of Sciences and the HSE University's Faculty of Physics have discovered how external forces affect the behaviour of turbulent flows. The scientists showed that even a small external torque can stabilise the system and extend the lifetime of large vortices. These findings may improve the accuracy of models of atmospheric and oceanic circulation. The paper has been published in Physics of Fluids.